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Abstract

The manufacturing complex for the Department of Energy (DOE) is distributed: design
laboratories, manufacturing facilities, and industrial partners. Designers must have a
concurrent engineering environment to support all aspects of the cradle-to-grave product
realization process across the distributed sites. Engineers must be able to analyze and
simulate processes, retrieve and process heterogeneous information, both archived and
current, and access multiple databases. Manufacturers must be able to coordinate activities
of various manufacturing centers, which may involve a negotiation process. Furthermore,
Sandia must be able to export manufacturing capabilities, such as on-machine acceptance,
to outside suppliers. A key element to making this a reality is a flexible information
architecture.

The DOE information architecture must support a wide-area virtual enterprise, with
distributed intelligent software components. The architecture must provide for
asynchronous communication; multiple programming languages and operating systems;
incorporation of geographically distributed manufacturing services; various hardware
platforms; and heterogeneous workstations, PCs, machine tool controllers, and special-
purpose compute engines. Further, it is critical that manufacturing facilities are not isolated
from design, planning, and other business activities and that information flows easily and
bidirectionally between these activities. To accomplish this seamlessly, heterogeneous
knowledge must be exchanged across both domain and organizational boundaries.
Distributed object and software agent technologies are two methods for connecting such
engineering and manufacturing systems. The two technologies have overlapping goals —
interoperability and architectural support for integrating software components — though to
date little or no integration of the two technologies has been made. The primary difference
between these two technologies is that distributed object technologies focus on the
problems inherent in connecting distributed heterogeneous systems whereas software agent
technologies focus on the problems involved with knowledge exchange across domain
boundaries.

This project addresses the integration of these technologies in support of concurrent
engineering, team collaboration, and manufacturing across organizational and geographic
boundaries. We discuss our experiences with both technologies, explore both in the
context of enterprise integration, and suggest future research in this area.

.
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1 INTRODUCTION

.

The DOE manufacturing enterprise must beagile. Agile rnanufacturing [l]refers to rapid response
to changes in product mix, batch size, manufacturing processes, customer requirements, and
technology while at the same time providing cost-effectiveness, reduced cycle times, and high
quality and accuracy. A robust software architecture is key to achieving this agility and to realizing
the integration of the extended enterprise. The information architecture must be scalable,
interoperable, and reconfigurable. Internet technology, electronic data exchange, and industry
standards for interoperability are core to the infrastructure. It comes as no surprise that the
February 1996 Communications of the ACM devoted an entire issue to the growing role of
computer science and software in manufacturing [2] or that entire workshops devoted to the role of
plug-and-play software for agile manufacturing [3] are being sponsored by engineering
professional organizations.

Given the requirement for agility, the heterogeneous computing resources, and the need to connect
to an extended enterprise, there are several demands placed on software in the DOE manufacturing
enterprise. Specifically, the software must support a variety of platforms, operating systems, and
programming languages. It must support rapid and easy customization, integration, and
reconfiguration. The software must facilitate information flow through the product realization

cycle — from design and analysis to planning to fabrication and inspection. The software must be
easy to deploy and usable throughout engineering and manufacturing facilities. Manufacturing
cells must be easily integrated into the extended enterprise such that manufacturing process data
(for example, inspection reports and on-machine measurements) can be stored in a database for use
by designers and process engineers in the future. Finally, knowledge must be represented in a
formal and unambiguous manner and exchanged between the various domains and organizations in
the enterprise.

In this section, we provide terminology and discuss background technologies related to distributed
objects and software agents.

1.1 Distributed Object Technology
Distributed object technology [4] allows computing systems to be integrated such that objects or
components work together across machine and network boundaries. Examples of current
distributed object or component technologies include CORBA[5], 0LE[6], and 0penDoc[7]. A
distributed object is not necessarily a complete application but rather a reusable, self-contained
piece of software that can be combined with other objects in a plug-and-play fashion to build
distributed systems. A distributed object can execute either on the same computer or on another
networked computer as other objects. Thus a client object may make a request of a server object
and the operation proceeds unaffected by their respective locations. Following the principles of
object-oriented design, a distributed object has a well-defined interface, describing the data and
functionality it exposes to other objects.

The most common standard for the deployment of wide-area distributed objects today is the
Common Object Request Broker Architecture (CORBA). CORBA addresses issues of
interoperability in a distributed heterogeneous system.

1.2 Common Object Request Broker Architecture (CORBA)
CORBA [5] is an industry middleware standard for building distributed, heterogeneous, object-
oriented applications. CORBA is specified by the Object Management Group (OMG), a non-profit
consortium of computer hardware and software vendors. At this time, CORBA provides the best
technical solution for integrating distributed enterprises; it is open, robust, heterogeneous,
interoperable, multi-platform, and multi-vendor supported.

The OMG Interface Definition Language (IDL) is used to define interfaces in CORBA. An IDL
interface file describes the data types, and methods or operations that a server provides for an
implementation of a given object. I.DL is not a programming language, but rather a language that



describes only interfaces: there are no implementation-related constructs in the language. The
OMG does specify mappings from IDL to various programming languages including C, C++,
Java, and Smalltalk. We will use IDL in Section 2 to show our interfaces to manufacturing
devices, the task sequencer, and other CORBA objects in a manufacturing cell. Our vendor-
supplied ORB product is Orbix from IONA Technologies.

The Object Request Broker (ORB) is the communication hub for all objects in the system; it
provides the basic object interaction capabilities necessary for components to communicate.
CORBA object services are common services needed in distributed object systems; these services
add functionality to the ORB. CORBA object services include, for example, standards for object
life cycle, naming, persistence, event notification, transactions, and concurrency. CORBA
common facilities provide a set of general-purpose application capabilities for use by object
systems, including accessing databases, printing files, document management, and electronic mail
in a distributed system.

The Internet Inter-ORB Protocol (IIOP) is defined in the CORBA 2.0 specification; it is an open
Internet protocol for connecting large distributed applications across the Internet. Specifically, it
provides for ORB-to-ORB communication built on top of TCP/IP. IIOP can connect applications
running on different computers and is scalable from the LAN to the Internet.

1.3 Software Agents
There are a number of definitions of software agents [8]. In the context of this research and agent-
based engineering, an agent is defined as an autonomous, persistent, encapsulated software
component that communicates with other agents using an agent communication language. We
expand on each of these properties: ,

. Autonomous: Each agent operates independently and asynchronously and interacts with
other agents on a peer-to-peer level, and not a strictly client-server communication
structure.

. Persistent Each agent maintains its own state, which is changing over the lifetime of the
agent. If the agent goes off-line, there will be some method of storing any agent messages
until the agent returns.

. Encapsulated Agents serve as containers for a collection of procedural and declarative
knowledge representing some engineering functionality. This knowledge is only accessible
via communication in the appropriate agent communication language.

. Agent Communication Lunguage: An agent communication language possesses formally
defined syntax and semantics and can be unambiguously represented in machine readable
format. Examples of such agent communication languages are KQML [9], KIF[1O] and
PDES/STEP (Product Data Exchange using STEP/Standard for the Exchange of Product
model data) [11 ]. By exchanging messages, agents act in a community in order to
accomplish tasks.

1.4 Agent Communication Languages
The ARPA Knowledge Sharing Effort has proposed an agent communication language, which
addresses a protocol for software agents to exchange knowledge. The agent communication
language is comprised of three parts: a messaging language and protocol, the Knowledge Query
and Manipulation Lunguage (KQA4L) [9], for the transfer of asynchronous messages; a content
language, Knowledge Interchange Format (KIF) [10], based on formal logic and predicate
calculus; and domain ontologies [12], vocabularies and formal relationships among entities in the
ontology.

KQML is a performative-based language based on speech act theory. The language specifies three
layers: content, message, and communication. The content layer is independent of KQW,
currently, the only limtation on this language is that it is ASCII text. The message layer is speech



act performative, which specifies the protocol for agent communication. Examples of KQML
performatives include tell, ask, reply, subscribe, and advertise. The communication layer specifies
a set of features that describe lower level communication parameters, such as sender, receiver, and
message ID. In addition, many agent systems built with KQML specify a content-independent
message router and ajacilitator (specialized agent that maintains information about other agents).
KQML supports both synchronous and asynchronous messages. KQML is also an extensible
language, allowing users to define their own performatives as the need arises.

This ARPA Knowledge Sharing effort lacks the low-level technology for enabling distributed
collaboration among heterogeneous software components in a wide area environment though the
KQML protocol can be built on top of a distributed object middleware, such as CORBA.

1.5 Knowledge Representation
An important element in any distributed engineering system is the mechanism used to represent
domain information. Both the academic and industrial communities have recognized the need for a
semantically unambiguous and machine-readable language for encoding relevant knowledge [13-
15]. Successful integration of multiple engineers and their tools requires the entire enterprise to
share a common model of relevant product and domain data. Inconsistencies or discrepancies
between the different information models severely degrade overall system performance and hinder
scalability. In the manufacturing domain, ambiguities in the product data exchanged between the
designer and manufacturing will usually result in a non-functioning product and necessitate another
development cycle.

The PDES/STEP standardization effort[11, 16] represents a major international drive to develop a
mechanism for the exchange of product information using a formal, machine-readable syntax, the
EXPRESS language [17, 18], with unambiguous semantic content (provided by integrated
resources) [19-24]. In a concurrent engineering system, information concerning part geometry,
topology, features, material properties and tolerances (STEP Parts 41, 42, 43, 45, 47 & 48) [19-
24] must be represented and exchanged. Several concurrent engineering systems have been
developed which utilize portions of the STEP standard for information representation and
exchange. [25-28]

1.6 Agent Architecture and Knowledge Sharing
Realization of a concurrent engineering environment which uses machine-specific capability
models requires the exchange of detailed process and product models between the designer and the
manufacturing service. Because manufacturing services may be remotely located from the
designer, the mechanism used to exchange process capability models must provide reliable,
distributed exchange of machine-readable information. Previous collaborative engineering systems
have satisfied this need with autonomous software agents which encapsulate the individual system
components and communicate using a formal agent-communication language [13- 15,26,29].
These systems used agent-based architectures to facilitate modularization and integration of
distributed heterogeneous engineering systems. By using the Internet for reliable byte-level data
connectivity, a truly world-wide distributed system is created [13].

In Section 2 we present our experiences with manufacturing integration using a distributed object
environment. In Section 3 we present our experiences with engineering integration using a
software agent architecture. In Section 4 we discuss integration goals and evaluate the distributed
object approach and the software agent approach to integrating manufacturing and engineering
enterprises. In Section 5 we discuss future research needs in this area.
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2 EXPERIENCES WITH INTEGRATION USING DISTRIBUTED OBJECT
TECHNOLOGIES

We have implemented a COR13A-based object-oriented integration of a manufacturing cell in the

Sandia Agile Manufacturing Testbed (SAh4T). We explain the development activities briefly here.
This work has been published in greater detail in [30-31].

2.1 Sandia Agile Manufacturing Testbed
The SAMT [32] is a manufacturing research facility at Sandia National Laboratories in Livermore,
California. The project objective is to develop agile manufacturing processes for various machined
and welded products. The physical component in the SAMT is a networked manufacturing cell
containing a conventional milling machine (Cincinnati 4-axis mill), a milling machine equipped
with an open architecture controller (Haas 4-axis mill), a lathe, a gas tungsten arc welder, a
coordinate measuring machine (CMM), various storage devices, and a Staubli robot which services
some of the manufacturing and storage devices. The computers in the manufacturing cell include
both PC’s, running the Windows NT operating system, and Unix workstations.

The SAMT is an attempt to address the following product realization cycle: design, planning, cell
management, and fabrication. During design, engineers use computer-aided design (CAD) tools,
simulation tools, and analysis tools to design parts that meet the customers’ requirements. The
planning phase includes planning for fabrication, assembly and inspection; fixturing, tooling, and
analysis tools assist the process engineer during this stage. The cell management activities include
scheduling, tracking, and job dispatching to the shop floor. The cell management software and
machine operators need access to design and planning data. The product realization cycle is by no
means sequential, but rather iterative; for example, incomplete designs may be planned to guarantee
that a part is manufacturable. Information from fabrication and inspection must be stored,
analyzed, and accessible to designers and process engineers at a later time.

2.2 Manufacturing Cell Software

An underlying objective of the cell management software is information-driven manufacturing, that
is, to first automate the flow of information to facilitate all those processes which precede and
follow the actual machining of a part. Where it makes sense, the cell management software also
permits the automation of the machining itself.

Each manufacturing device in the SAMT implements the same OMG IDL interface: by
manipulating the software interface, a client program can control the corresponding machine. The
client software, the cell management software components, controls the manufacturing activities in
the SAMT.

The cell management software components are responsible for the following tasks:

●

●

●

●

●

●

●

entering process plans into the cell from the SAMT process planning node or external
source

directing the development of a production plan from a process plan (i.e., producing a
physical realization of a process plan)

assigning production plans to be scheduled

maintaining cell schedules, both long-term and short-term

dispatching jobs to machines in the cell

coordination of manufacturing devices in the cell

event logging of all cell activities and storage of all cell data (on-machine inspection [33],
CMM inspection, etc.)



. gathering data and statistics on machining processes (tool utilization, for example)

.

. interface to planner for replanning of machining based on sensory input

. interface to material handling system

● interface to inventory system.

2.3 Manufacturing Devices
Each of the physical manufacturing objects in the agile manufacturing cell is controlled by a
corresponding CORBA software object. In spite of the apparent differences among the various
devices (lathe, robot, storage table, etc.), these objects all support the s~e software interface, an
LDL interface called IDevice. As seen in Figure 1, the “plug-in” jack at the top represents the
IDevice interface itself. This is the network-visible interface that each manufacturing device in the
cell is required to implement.

I Device Interface _ Network client

n Device independent

CDevice ckiss

Figure 1. Implementation layers of IDevice.

Below this is a largely device-independent layer that is common to all of our IDevice
implementations. While dealing with issues like presenting the CORBA interface, threads, access-
control, version strings, etc., the functionality of this layer does not vary greatly for different
manufacturing devices. However, the IDevice object is ultimately required to access the hardware
level of a device, for example, to open a chuck or execute a block of NC code. The mechanisms
for accomplishing this do vary greatly and the functionality required of this machine-dependent

layer is captured in our standardized CDevice C++ class. We refer the reader to [30] for a more
detailed discussion of CDevice.

2.4 IDevice Interface

The IDL for the IDevice interface is as follows:

interface IDevice : IBaseDev, IAllocDev, IRunDev, IMovePart
{
//Locate program database for device.
IProgDB GetProgDB();
//Locate operator console for device.
IConsole GetConsoleo;
};

IDevice inherits operations and attributes from the following other interfaces:

● l13aseDev — Naming and operational status for the machine.



. IAllocDev — Controlling access to the machine.

. IRunDev — Running processing activities on the machine (i.e., machining a part).

● IMovePart — Transferring material into and out of a machine.

The GetProgDB() operation within IDevice returns a value of type IProgDB , which is an object
reference to its database of manufacturing numerical control (NC) programs. This type
corresponds to another IDL interface, thus, the returned object reference can be used to access the
database of NC programs available for the device. IProgDB assumes nothing about the underlying
database. Similarly, the GetConsoleo function returns a reference to an IConsole object. This
object can be used to access the operator’s console for the device, enabling communication with a
human operator.

In the CORBA IRunDev interface we provide both synchronous and asynchronous methods for
running programs. A call to the synchronous RunThisProgramo returns only when the operation
is complete, causing the caller to block during processing. An asynchronous call
StartThisProgramo immediately returns a boolean success/fail value, indicating whether the
operation was successfully initiated. The string output value that would have been returned by
RunThisProgramo is instead posted to a passed notification object when the operation is
completed. Details can be found in [30]. The creation of a notification object for a call-back allows
a client to exit or process other jobs without the results being lost.

In the IMovePa.rt interface, material movement is accomplished with the operations
TakeFromPartnero and GiveToPartnero. Using these operations, direct device-to-device
communications affect exchanging a part without micro-management of cell manager. A robot
device, for example, has an object reference to its partner in the exchange (set in a previous call td
the robot’s SetPartnero operation), the robot object can manipulate the lathe directly. Thus a call to
the GiveToPartnero operation on the robot results in its assuming responsibility for the transfer,
invoking operations on the lathe interface as needed, and awaiting its replies. This kind of peer-to-
peer interaction is very natural and easy to implement with distributed objects, and is a real strength
of the CORBA technology.

In many cases, the operation of machines in the manufacturing cell is not completely automated.
This may be because of limitations in the machine controller, or just because we still rely on the
expertise of human machinists in various manufacturing processes. Further, the removal of
humans from the manufacturing process is not a design goal of our system. Our CORBA-based
software architecture in place for the SAMT cell control supports both automated and manual
activities. Consider, for example, the operation RunNamedProgramoin interface IRunDev. This
operation accepts as an input string the name of the NC program to run in the manufacturing
device, and it is the obligation of the IDevice object implementation to do whatever is necessary to
carry out the requested machining operation. In the fully automated case, the software can carry
out the task by itself. It looks up the provided name in the program database (using the IProgDB
interface) associated with the machine, downloads the resulting NC code into the machine, and
runs the code on the machine.

In the case that the machine does not support automated operation, it still must be a part of the
information flow in the cell. Thus, we still provide an IDevice object for the machine which
implements, for example, the RunNamedProgramo operation. The implementation of this
operation is obliged to do whatever is necessary to caq out the task. In this case, the
implementation uses an IConsole interface to perform the operation. The IConsole interface
provides operations needed to carry on a dialog with a human operator, The IConsole interface
gives the machine operator access to an electronic traveler, described in [31]. The IDevice
implementation uses these operations to request that the operator run the named NC program on the
machine, for example.

As seen in Figure 2, from the cell management software perspective, both automated and manual
operations appear the same. This design decision allows us to implement a wider range of
manufacturing devices without changing any cell management software.



Figure2. Automated andmanual operations.

2.5 Cell Management Software

The cell sequencer dynamically attaches to devices, hence, there is no need to re-compile when a
new machine tool comes on-line or a machine tool disappears. The sequencer accepts jobs,
dispatches tasks in the cell, prevents deadlock situations and guards against starvation of any single
job. An abbreviated IDL for the sequencer, ICellSeq, is as follows:

interface ICellSeq
{
readonly attribute string CellName;
long AddJob (inout ITraveler, in INotify WhenDone);
void Pause (in long JobID);
void Resume (in long JobID);
void Abort (in long JobID);
boolean DeleteJob (in long JobID);

boolean AddDevice (in string DevName, in IDevice Dev);
boolean AddRobotDevice (in string DevName, in IDevice Dev);
boolean RemoveDevice (in string DevName);
IDevice QueryDevice (in string DevName);
};

The attribute CellName contains the name of the manufacturing cell, allowing for several cell
sequencers to be coordinated by a shop floor scheduler. A new job can be added to the sequencer
with the AddJobo operation. This operation takes an ITraveler object reference as an argument.
When it comes into the cell, the lTraveler object will contain all of the necessary information to
execute the job, including a “script” of high-level instructions to be accomplished in the cell. The
AddJob operation also takes an INotify object reference so that the sequencer’s client can be
notified of job completion or error conditions encountered. The return value of the AddJobo
operation is of type long, indicating the assigned JobID given by the sequencer; this JobID can
then be used to Pauseo, Aborto, Resumeo, or Deleteo a job in the sequencer, even while the task
dispatcher is operating. Though the cell sequencer coordinates cell activities, many operations will
be accomplished intelligently by the devices. For example, we have mentioned that all material
transfer is performed as peer-to-peer object interaction, independent of the supervisory control of
the task sequencer.

There are four operations in ICellSeq which
sequencer: AddDeviceo, AddRobotDeviceo,

allow a client to manipulate devices known to the
RemoveDeviceo, and QueryDeviceo. Notice that



there are two different operations to add a device to the sequence~ the AddRobotDeviceo is
necessary to distinguish robot and transport vehicles from all other manufacturing and storage
devices known by the sequencer. The sequencer must know if a device is a transport device in
order to prevent certain deadlock conditions in the cell. By including operations for dynamically
adding and removing devices in a cell sequencer, the sequencer will never have to be recompiled or
restarted when a new IDevice object is available on the network. In theory, this architecture
supports a cell sequencer remotely dispatching jobs to any IDevice objects.

The current task sequencer is quite simple, with no scheduling optimization criteria. This task
dispatcher can be used by a smart scheduling object. This elaborate scheduler will call ICellSeq to
dispatch jobs once it has optimized on “time”, “cost”, and “priority” values on jobs.

Another strength of our CORBA implementation is that the current interface and implementation of
ICellSeq should remain constant as described above even when we add this and other new
components to the cell management activities.

2.6 Integrating Enterprise Applications Using CORBA

From our experience, there are many ways to integrate existing and new applications within our
CORBA-based manufacturing environment. We discuss these here.

2.6.1 Integrating CAD systems and COTS software

A large number of design, analysis, and manufacturing applications are commercial off-the-shelf
(COTS) software packages. For example, at Sandia most mechanical designers use
Pro/ENGINEER from Parametric Technology Corporation as the CAD system of choice.
Pro/DEVELOP is a software developer’s toolkit with a C API for allowing Pro/ENGINEER to
access other applications. Through this API, a designer’s standard interface can be customized to
be a client to any CORBA (or Java) object in the enterprise.

Any commercially available software package that has an API or a scripting language can be
wrapped with a CORBA interface and made available on the network. Further, any COTS package
that has an extensible GUI can be extended to be a CORBA client.

2.6.2 Integrating legacy software and databases
In a manufacturing enterprise, it may be necessary to integrate legacy codes into a design or
manufacturing environment. In the SAMT environment, we had several legacy design and
analysis codes written in FORTRAN. These particular codes were solid engineering codes, yet
they did not execute because the I/O required an old graphics terminal. CORBA provided a solution
to making this code accessible again, without having to rewrite the code. First, we stripped out
any I/O from the source code, and created a FORTRAN library, which could be called from C or
C++ code. Second, we defined a CORBA IDL to the code, providing functionality for putting data
into the analysis code, executing any engineering functions, and extracting data from the analysis
code. This software component then becomes available over the network to any CORBA client. (In
Section 2.6.3, we discuss a number of methods for developing client software to CORBA
objects.) A new graphical user interface or web interface to the code can be developed easily
without changing the engineering functionality in the analysis code.

The same approach can be used wrapping relational databases as CORBA objects, accessible on
the network. Providing CORBA access to databases is critical to the development of software to
support a small manufacturing cell or the extended enterprise. New databases can be added to the
enterprise by implementing the common IDL database interface. Because CORBA-based
applications expose standard interfaces to the network, the application becomes available as a
component to other CORBA-based applications and other CORBA clients on the Internet or a
restricted corporate Intranet. This functionality allows software developers to build up collections
of reusable, large-grained services that can be used and customized by other developers to
assemble new applications or integrate existing applications.



2.6.3 Support for a variety of software clients
While CORBA allows two CORBA objects on two different machines, operating under two
different operating systems, andwritten in two different programming languages to access eaeh
other’s attributes and methods seamlessly across a network, it also allows many different client
applications to be integrated into the environment. We have adopted this software engineering
development technique: as much as possible, we attempt to separate the GUI from the “compute
engine”, so to speak. This philosophy allows for more software reuse, especially given how
rapidly new GUI development toolsflanguages and browser extensions evolve. Examples of the
speed of the technology development curve is the decreasing development time between new web
browser versions or the increasing growth of the Java programming language in just one year.

Figure 3 shows how CORBA objects can easily be accessed by a variety of client programs on a
variety of hardware platfon-ns. In the left-hand column of the figure, CORBA objects are located.
In the right-hand column, a number of client technologies are presented. Any client on the right
can access any CORE3A object, by using an “adapter”. An “adapter” is the technology (either
vendor-provided or developed elsewhere) that allows a CORE3A object to be accessed by a desktop
client or a client written in some GUI development language. The figure illustrates this plug-and-
play client technology, by matching adapter jacks and client jacks.

* Tk/Tcl
--------~

w“”. Www
rnwcer

Iai+” mlapter “
Java

-

\ OLE *------ -- MS Excel

- VisualBasic

Figure 3. Integrating a variety of software clients into our software architecture.

We have developed GUI’s and client applications for cell monitoring and cell management using
the Tcl/Tk [34] programming language. The Tc~k applications were developed using an
extension [35] of Tcl/Tk, TclDii, which allows the use of distributed CORBA objects from within
Tel. One of the great strengths of Tcl/Tk is the ease with which X-Windows based user interfaces
can be assembled, and this CORBA-based extension to Tcl is a very useful tool for rapid-
prototyping GUI’s and for debugging CORBA components. The resulting client GUI is portable
across several platforms.

2.6.4 Integrating to World Wide Web

Today more and more manufacturing companies have an Internet presence and this is central to
their way of doing business with customers, suppliers, and business partners. In addition to the
Internet, Intranets (i.e., internal restricted-access networks, possibly connected by a firewall to the
Internet) and Extranets (i.e., restricted networks shared between partnering business entities) are
becoming commonplace in today’s corporations and laboratories. Web browsers can be used to
navigate Intranets and execute applications, which can be quite sophisticated.

There are several ways in which a CORBA-based distributed system is accessible on an Intranet or
the Internet. One powerful way is with the inclusion of Java client applets that communicate with
CORBA objects, executing on other computers in the enterprise. Java [36] is an object-oriented,
platform-independent programming language that has libraries for Internet access. Most web
browsers allow Java applets to execute in the web browser when a web page is downloaded. Since
the web browser loads and executes applets on the fly, new applications and modifications to
applications can be deployed instantly. Many ORB vendors have solutions for the integration of
Java clients (and Java servers); we have used OrbixWeb from IONA Technologies. Java clients
supporting IIOP will be transportable across ORBS. Not all Java-CORBA integration strategies



will work through a corporate firewall since some may require an open socket connection from the
applet to the ORB daemon; furthermore, some firewalls block Java execution.

Another method of allowing web access to CORBA objects is by using CGI (Common Gateway
Interface) scripts which are clients to the CORBA objects. This may be helpful when a firewall is
an issue. We have successfully used Tel, C, C++, and Perl as languages for writing CGI
programs that are clients to CORBA servers. These other papers [37,38] discuss the integration of
the World Wide Web and distributed objects (i. e., CORBA), and the consensus is that this is a
very complimentary and powerful technology integration.

Cument releases of Netscape client and server software include Netscape ONE [39], the open
network environment, which supports IIOP. Thus any Netscape application can communicate
transparently with any COR13A enterprise application.

2.6.5 Integrating to PC applications software

Orbix allows access to OLE [6] objects by providing an OLE adapter provided by IONA
Technologies. This adapter allows CORBA objects and OLE objects to interact, thus enabling
access to and from many PC and Mac desktop applications. We have used this technology to input
numerical data from a Microsoft Excel spreadsheet into a CORBA design code on the network; the
resulting output comes into Excel, and the output can be graphed in Excel. We have used the same
adapter to build Visual Basic applications that execute on a PC and communicate with CORBA
objects across a network. Visual Basic is a good language for rapidly building GUI’s and clients
for a PC and for interfacing to OLE objects.

2.7 Strengths and Weaknesses of Our CORBA-Based Manufacturing Integration ‘
In our CORBA-based manufacturing environment, the distributed object CORBA interfaces for
management of a manufacturing cell are robust, allowing for easy addition, deletion, and updating
of manufacturing devices in a plug-and-play fashion. Further, this architecture supports not only
manufacturing automation, but human integration by providing console interfaces to manufacturing
devices. CORBA enhances the system integration because it is an industry-standard for
interoperable, distributed objects across heterogeneous hardware and software platforms. The
resulting architecture is scalable and extensible across a wide-area enterprise.

CORBA supports integration with many different information technologies: World Wide Web,
OLE, Java, and different programming languages. In time, as commercial software vendors, for
example, database vendors, provide CORBA interfaces to various software components, it will be
easy to integrate them with our developed manufacturing software. Our experience with CORBA in
this environment was quite positive. While it would no doubt have been possible to implement a
manufacturing environment using a non object-oriented distributed computing technology, we
believe that CORBA substantially eased the implementation of a good, scalable, manufacturing
architecture. Specifically, the ease with which object references can be used as return values and
calling arguments for operations was central to the architecture we designed. While analogous
functionality is presumably possible with other distributed computing technologies, it seems not to
be as easy and natural as it is with CORBA.

The manufacturing cell integration is a very specific manufacturing application (cell control), which
is very well-suited to the vertical integration framework that we applied. (In a vertical integration,
the software components are connected in a vertical fashion, where interfaces between components
are well-defined and well understood.) Adding additional tools and databases into the larger
manufacturing enterprise can break this type of framework, hence, a hon”zontal integration
framework, one that allows any software tool to be plugged into the enterprise, is a better
integration strategy for the enterprise. The Product Realization Environment (PRE) [40], being
developed at Sandia National Laboratories for Defense Programs, is an example of a horizontal
enterprise integration framework. Some of the advantages of PRE include these:
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Elimination of ad-hoc integration

Provision for simple, non-intrusive application integration

Provision for simple, dynamic integration of new applications into enterprise

Standard set of objects shared by all applications

Standard solutions to common problems, which reduces the programming effort and
redundancy while providing for robust, common systems

Software development tools and standards

Shielding application programmers from bugs in CORBA software, compilers, and
operating systems

Common services

Elimination of difficult andlor repetitive programming

In our manufacturing cell, all software interfaces were designed and implemented within a single
organization, i.e., Sandia National Laboratories. The same integration would have been difficult,
though not impossible, if the manufacturing cell was spread across several organizations. In this
latter case, software developers from each organization would need to agree on the interfaces.

As a solution to this problem, SEMATECH has proposed CORBA IDL for a computer integrated
manufacturing (CIM) framework [41]; this framework will likely be updated as a result of
recommendations made at NIST [42] and experiences at SEMATECH [43]. A key concern we
have is the degree to which the SEMATECH architecture supports information-driven
manufacturing with human integration and the degree to which outside manufacturing softwarq
suppliers adopt these interfaces. A second concern that we have is that because these interfaces
have been designed by a consortium committee, the interfaces themselves are rather complex. A
third concern of ours is the extent to which other engineering applications can be easily integrated,
as in a horizontal framework. A final concern of ours is that no real implementation of the
SEMATECH framework exists, even though this has been proposed for several years now.

3 EXPERIENCES WITH AGENT-BASED INTEGRATION TECHNIQUES

In joint research with the Center for Design Research at Stanford University, we proposed an
agent-based concurrent engineering architecture [44]. We focused on the design phase and the
mechanisms necessary to exchange process capability data between a manufacturing service and
the designer. This architecture provides a mechanism for utilizing dynamic capability information
taken from an on-machine inspection process [33] to realize a concurrent design environment. The
implementation of this concurrent engineering environment addresses four primary challenges:

1. Process model generation.
2. Acquisition of the model by the designer.
3. Mapping of the model into the design space.
4. Applying model information during design.

The goal of our architecture was not to develop “the solution” to concument engineering, but rather
to implement a concurrent engineering system which explores solutions to the challenges listed
above, focusing specifically on the need for machine-specific capability information.

3.1 Representation of Process Capability Models

The proposed architecture uses a formal object-oriented conceptual model (written in EXPRESS)
to represent the capability information for an on-machine inspection process. This model
represents both the objects present in the development cycle and their relationship to one another
during execution of the development cycle. In this model, knowledge relating to geometry,
topology, materials, tolerances and features is represented using STEP Parts 41,42,43,45,47 and
48. The entire process capability model hierarchy can be found in [44].



3.2 Agent Architecture

In our agent architecture shown in Figure 4, knowledge and functionality are encapsulated inside
agents. The primary benefit of an agent-based architecture is that it facilitates the modularization
and integration of large systems comprised of distributed, heterogeneous components. The
integration of multiple designers with multiple manufacturing services represents such a system.
An agent information infrastructure facilitates the integration of heterogeneous software tools,
databases, legacy software, CAD/CAM commercial packages, and newly developed software.
Agents logically unify heterogeneous distributed information and knowledge. This particular
architecture is geographically distributed, with the designer residing at Stanford University, and the
manufacturing facility and on-machine acceptance capability (OMA) residing at Sandia/California.

Figure 4. Agent Architecture.

In our implementation, manufacturing process knowledge is represented using portions of the
STEP standard and this knowledge will be exchanged as agent messages written in EXPRESS.
KQML is used for the outer structure of all agent messages. Agent messages are sent over the
Internet using the TCP/IP transport protocol.

Information, in the form of STEP schemas, that is exchanged from the inspection process to the
design processes is displayed graphically to designers as Java applets. Java [36] is a platform-
independent, interpreted language which allows for the rapid prototyping of GUI’s and execution
of client programs within a web browser. The designer, therefore, does not need to learn or
understand STEP and/or EXPRESS, and the design environment requires no additional software
since most web browsers support the transport and display of Java applets. Thus, the features and
part information will be mapped to STEP as a method of knowledge exchange, and the designer
will view this information in a format that is useful and readable to hindher.

When the designer requests information and process constraints from manufacturing services, the
work is performed by the design agent, interfacing to the CAD system. The design agent serves
two functions: first, as incoming agent messages are received, the contents are interpreted and
based on the message contents, the CAD tool (and hence designer) is notified accordingly; and
second, as design phase events occur, agent messages are constructed and sent to coordinating
agents. Similarly, the cell manager agent receives all requests from outside of the manufacturing
cell, forwards requests to internal manufacturing agents as appropriate, combines any responses,
and returns one or more messages to the sending agent.



3.3 Application of Capability Information During Design
The conc&rent engineering architecture uses a feature-based design system [29,45,46] which
enables designers to evaluate the inspectability of each feature as it is added to a design. The
system consists of a CAD system, in our case, PROIENGINEER by Parametric Technology
Corporation, a design agent, and a constraint manager. (Note: this architecture can support any
commercial or publicly available CAD tool.) As shown in Figure 5, the design agent and
constraint manager will communicate with the CAD system via the prescribed API. The appropriate
process capability models and all relevant inspection constraints for the selected manufacturing
service and machine will be acquired by the design agent (according to the above protocol) mapped
into the local representation format (dependent on the CAD system and constraint manager) and
loaded into the both the CAD system and constraint manager. The set of feasible fabrication
features and stock parts will be loaded into the CAD system. The related process, machine and
manufacturing service constraints on the fabrication features will be loaded into the constraint
manager.
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Figure 5. Design Agent: Internal Architecture.

Once the capability information has been acquired and loaded, the designer uses the CAD system to
select a feasible stock and uses CSG operations with feasible fabrication features to design a part.
As each fabrication feature is applied to the part, the designer must identify, for the set of resulting
inspection features, the desired tolerance. The specified tolerance, along with the nominal feature
geometry and its position relative to the current part will be submitted to the constraint manager to
determine constraint satisfaction. The constraint manager will apply all relevant declarative and
procedural constraint information. If any constraint violations are found they will be reported to the
designer, who may alter the applied feature or renegotiate the OMA constraints to satisfy the
constraints or continue with the violating design.



The machining agent is implemented with an agent wrapper around the manufacturing
presented in Section2. This wrapper can beseenin Flgure6.
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Figure6. Machining Agent: Internal Architecture.

This architecture is implemented with the Java Agent Template (JAT) [47], a template for creating
KQML-speaking agents in Java, designed by Rob Frost. The JAT makes it easy for prototyping
software agents in Java; however, this does not have the same services as standard distributed
object technologies such as CORBA. Hence, software developers still have to implement many
agent services.

3.4 Integrating Enterprise Applications in the Agent-Based Architecture

Any COTS software package that has an API or a scripting language can be wrapped as an agent;
though the process of creating an agent interface (including determining what knowledge must be
defined, exchanged, and interpreted) will be more complex than it is in making this same software
available as a CORBA object. Any legacy software and any database can also be “wrapped” as an
agent.

Further, any COTS package that has an extensible GUI can be extended to be an agent which
sends messages to other agents.

Java is an excellent programming language for creating agents that are available on the World Wide
Web. The Java Agent Template is one example of a KQML agent toolkit written entirely in Java.

Though it is possible to create interfaces to other component software technologies, such as OLE,
there are no vendor-supplied tools for doing so, and hence, the sooftware development cost is
high.

3.5 Strengths and Weaknesses of Our Agent-Based Integration

We have developed an agent-based architecture and related knowledge representation for using an
on-machine inspection process in a concurrent engineering environment. This allows designers to
design parts for manufacturability and inspectability, and hopefully reduces the computational cost
of process planning. This agent architecture supports a geographically and organizationally
distributed system where the design agent resides at one location and the manufacturing agents
reside at Sandia National Laboratories in Livermore, California. Agent messages are constructed
in an unambiguous agent communication language, and they are sent between a designer and
manufacturing services across the Internet. This concurrent engineering approach can be adapted
easily to other design environments and also to other manufacturing and inspection processes.

We have shown the feasibility of the knowledge exchange between a design agent and a
manufacturing agent, yet there are still many challenges in this area. First of all, even though we
used EXPRESS to define our knowledge, our particular ontology is not at all standard and it is
unlikely that it ever will be. Our knowledge exchange is dependent on a simplified on-machine
inspection process model, which does not include thermal effects and has a number of simplifying
assumptions. Further, the OMA model should be enhanced with the addition of historic on-
machine acceptance data. With respect to constraints, we have only proposed to support simple



geometries and features, yet in order to be production worthy, we need to add more complex
geometries and features, costs associated with constraints, and fabrication constraints. Currently,
fabrication feature constraints are not represented because the same machine is used for both
fabrication andinspection; however, tieprocess capability model used togenerak the inspection
constraints should be largely reusable for creating fabrication constraints and thereby incorporating
design-for-manufacturability. This concurrent design architecture will become more powerful as
functionality is added to additional agents, and additional manufacturing processes (e.g., process
planning and assembly) are encapsulated as agents. At this time, there is a significant startup effort
for other design and manufacturing entities to plug into this architecture, and most industry
partners will be reluctant to spend the time and energy for the software development.

The software development costs in this project are high at this time because developers are forced
to deal with the low-level network and agent messaging requirements. The JAT, a publicly
available research software package, hides some of the KQML parsing and TCP/IP message
requirements, though this tool is not professionally developed, not supported, not robust, and not
industry-standard. Finally, there are no real equivalent development tools such that KQML
integrates with other technologies as seamlessly as CORBA does.

4 SOFTWARE INTEGRATION ISSUES

There are a number of software integration issues that should be considered when developing an
enterprise architecture. We list them here.

●

●

●

●

●

●

●

●

Object-oriented abstractions: An object-oriented abstraction of a software component
reduces complexity and time-to-market since interfaces are well-defined and new module+
can be plugged and played into the architecture. An object-oriented abstraction also
provides software reuse of common services.

Heterogenei~: Most manufacturing enterprises will be heterogeneous with respect to
hardware platforms, operating systems, and programming languages.

Ease of development There is always a need for the enterprise to grow, such that new
services and applications can be used by other software components. It is necessary that
new software can be developed and integrated into the enterprise.

Supportfor distributed applications: The enterprise is, by definition, distributed. Data and
knowledge will be exchanged across the enterprise. It is necessary that software
development of distributed components is easy and that the network layer is hidden from
the software developer.

lnteroperability: Interoperability defines the ability for two software components (objects or
agents) on heterogeneous machines to read the data that is exchanged on the network.

Extensibility: The enterprise is constantly growing to include new software, new partners,
and new computer systems. The software integration architecture must be flexibly enough
to adapt to this.

Securi~: Since the enterprise is extended to include partners outside of organizations, the
Internet will often be used to transport data. Computer security must be present in several
forms. First of all, users to engineering and manufacturing tools may have to be
authenticated. Second, data might be proprietary or sensitive in nature, and hence, to
support the transport of this data over the Internet, it must be encrypted.

Maturi~ of application The underlying infrastructure should be mature enough so that
changes made to the low-level infrastructure have little or no effect on the applications in
the enterprise.
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. Standards compliance: By complying to standards at the middleware level, it makes it easy
to plug-and-play applications and to purchase applications that comply to the same
standard.

. Integration with software component so~are: It is important to be able to integrate with
component software, e.g., OLE, DCOM, CORBA, and DCE, so that desktop applications
and existing Unix infrastructures are readily available for use in the enterprise.

. Cost: There are many costs associated with enterprise integration: the cost of purchasing
software, the cost of developing in-house software, the cost of integrating software, the
cost of software maintenance, and the cost of re-doing the enterprise if an software design
is made.

. Agent Communication Protocol: When there are many agents (or objects) in a distributed
system, there should be some agent (or object) protocol for how these distributed
components communicate.

. Coordination: Coordination refers to the process of multiple agents (or objects)
communicating to accomplish a goal.

. Semantic Unification: When two or more agents (or objects) talk about a “part”, for
instance, both must be referring to the same thing. Without an agreed upon vocabulary,
potential problems arise.

We first discuss integration strategies or frameworks. We then revisit the specific integration
problems that we encountered in the CORBA-based manufacturing environment and the agent-
based concurrent engineering environment. Then we survey the CORBA-based approach and the
agent-based approach to integration with respect to the above criteria.

4.1 Integration Strategies

Neither of distributed object approach nor the software agent approach alleviate the need for an
integration strategy or framework. CORBA and KQML are only tools, and still the software
development in the enterprise must be done with an integration strategy. In the CORBA-based
manufacturing cell, our integration strategy was to provide well-defined interfaces in a vertical
integration of a manufacturing cell. In the agent-based engineering, our integration strategy was to
define specific interfaces for each agent or service in the system. Without an integration strategy,
tools, data and applications are integrated into the enterprise in an ad-hoc fashion Ad-hoc
integration leads to the following problems:

. The resulting system is not scalable and can in fact collapse at some point.

. There is an N2 problem, where N is the number of applications in the system. Adding one
new application often requires N other applications to change to accommodate the new
application. The enterprise itself is very brittle.

. Integration and software problems are solved as they arise, which can result in a
duplication of effort since each software developer in the enterprise may have to write code
which solves the same problem.

. It becomes nearly impossible to plug in new applications,

Hence, with either approach, it is critical to have an enterprise integration framework to support
scalability of the enterprise.



4.2 Problems With Using CORBA to Integrate Enterprises
One current limitation of CORBA is that it does not define a protocol for knowledge exchange thus
the support for software agents is not at all easy or standard. Furthermore, CORBA does not
enforce standard interfaces nor common terminology for the easy integration of related software
components. Thus, integration between domains and organizations is not trivial. Finally, as we
mentioned in Section 4.1, an ad-hoc integration in CORBA, without an integration framework, can
lead to scalability problems. The manufacturing cell that we developed had a very well-defined
vertical integration framework.

4.3 Problems With Using Software Agent Communication Languages to Integrate
Enterprises

There are several problems with using software agent communication languages to integrate
manufacturing and engineering enterprises. First of all, there is no standard way for the agents to
connect to and use non-agent applications, e.g., databases, in the enterprise. Second, KQML and
other agent-based approaches are not widely used; thus, there are no development tools, no
applications from which to leverage, and no vendor-supplied software on which to develop.
Third, the KQML standard is up-in-the-air, currently there is no real formal protocol for
performatives and any number of new perforrnatives can be arbitrarily defined by users. So, even
in an agent-based enterprise, the software developers have to cooperate on interfaces prior to new
agents being plugged into the architecture. Fourth, the development of ontologies and the
knowledge exchange problem are difficult problems and thus there is no simple solution that you
can pick up and integrate into an architecture. Finally, there is no built-in security (authentication
or encryption) in KQML.

4.4 Evaluating Distributed Object Techniques and Software Agent Approaches to
Enterprise Integration

CORBA provides an interface language for creating an object-oriented abstraction of an enterprise
software component. Agent communication languages such as KQML do not provide the same
abstraction. However, using an object-oriented programming language, such as Java, can be used
to build KQML-speaking agents, thus, agents can be developed with object-oriented abstractions.

Both CORBA and the agent-based approach are integration techniques that can be applied
regardless of hardware platform or programming language. CORBA explicitly supports a higher
level of integration, i.e., at the distributed object level, and it provides a number of services that are
useful to distributed object systems. KQML agents can be built on top of CORBA.

In our experience, the software in our CORBA-based manufacturing environment was much easier
to develop than the manufacturing agents in the agent-based enterprise. This is primarily because
the low-level network interface and marshaling of arguments across distributed components was
provided by CORBA, and hence, the software developers did not have to write low-level network
software to deal with the heterogeneous, distributed system. In the agent-based approach, we
developed home-grown, academic software, which was perfect for our showing a proof-of-
concept rather providing a production quality manufacturing environment. However, the agent-
based approach was not built on top of middleware software such as CORBA, and the software
developers had to worry about low-level network details. By using the JAT to integrate an agent-
based enterprise, some of the development effort is done in this template, relieving the software
developer of low-level details. On the other hand, the JAT itself is supported by an academic
department and the Java programming language itself is currently undergoing changes.

While both the agent approach and the distributed object approach have goals of supporting
distributed applications, only the CORBA approach to building enterprise systems has explicit
support for developing distributed applications. Likewise, only CORBA, and not KQML, is
designed to solve the issue of interoperability.



Both the distributed object approach and the agent approach to enterprise integration are extensible,
yet as the number of objects (or agents) increase, there will be problems with scalability. In both
approaches, there must be methods for dealing with the scalability of the enterprise design.

One of the necessa~ missing features in both strategies is security. The OMG has specified a
CORBA security standard, yet not many vendors have implementations of this OMG security
specification at this time. In our manufacturing cell, the manufacturing devices and cell
management software are only accessible on Sandia’s restricted Intranet, so the firewall provides
some security. The agent software, however, has no security implementation. When a vendor-
supplied CORBA security implementation is available, the CORBA-based manufacturing system
can be updated to take advantage of security needs.

Regarding maturity of applications, academic researchers have done. some prototyping with
integrating engineering and manufacturing enterprises with software agents; however, the resulting
systems are not robust, not complex, and not distributed in a wide-area geographically distributed
environment. Furthermore, the KQML technology is not mature or widely used. On the other
hand, industry is using distributed object technologies and standards, such as CORBA, to build
enterprise systems, and this technology is mature. CORBA has proven applications, vendor-
implemented object services, and some object facilities.

CORBA is an industry standard for building distributed object systems. Though there have been
efforts to “standardize” KQML as an agent communication language, to date, this has not
happened. Furthermore, because researchers do not agree upon the semantics for the basic set of
KQML performatives and KQML is extensible, a standards effort is difficult.

As discussed in Section 2, CORBA is interoperable with other component software. At this time,
there is no adapter or facility to allow component software and agent communication languages to
interoperate.

Whereas academic researchers are usually not willing to pay for vendor-supplied software,
industry realizes that the cost to develop software in-house is usually much higher. Most ORB
products are supplied by vendors, though some public domain ORB’s are planned. KQML is
“free”, so to speak, though the in-house software development costs to build the underlying
infrastructure are high.

As we have mentioned in Section 4.2, CORBA is not an agent communication language and there
is no agent facility in CORBA, and thus if an agent architecture were developed on top of CORBA,
some protocol for how agents communicate must be used. KQML is an agent communication
language.

There is no semantic unification as part of the CORBA standard or being developed by the OMG.
KIF, PDES/STEP, and ontologies all provide semantic unification. If agents are developed in
CORBA or if agents use KQML, there is still a need to add the semantic unification to the
architecture. In the agent-based engineering scenario that we developed in Section 3, we used the
OMA model presented in EXPRESS format for semantic unification.

Finally, neither CORBA nor KQML directly provides coordination of agents. This is something
that the software designers and developers must build into the architecture. Because KQML is an
agent communication language, it will be easy to develop coordinating agents based on the
message exchange. However, agents can be built with CORBA thus that various methods cause
the agents to coordinate.

4.5 Using Java To Integrate Manufacturing and Engineering Enterprises

Many researchers [48] are exploring Java as a way to build distributed computing systems, in
essence, an alternative to CORBA. Java has a distributed object model, the Remote Method
Invocation (RMI) [49]. Java has the following features which are useful in a distributed object
system: close integration with the web, security, multi-threaded language, absence of common
error-prone language semantics and addition of useful language features (for example, exception
handling and garbage collection), and portability across hardware and operating system platforms.











UNLIMITED RELEASE

INITIAL DISTRIBUTION:

1 MS 9003
1 MS 9011
1 MS 9003
1 MS 9011
1 MS 9012
1 MS 9214
1 MS 9214
1 MS 9012
10 MS 9012
1 MS 9012
1 MS 9012
1 MS 9019
1 MS 9011
1 MS 9011
1 MS 9001

1 MS 0188
3 MS 9018
4 MS 0899
1 MS 9021
2 MS 9021

D. L. Crawford, 8900
R. E. Palmer, 8901
D. L. Lindner, 8902
P. W. Dean, 8910
J. E. Costa, 8920
N. M. Berry, 8920
E. J. Friedman-Hill, 8920
J. A. Friesen, 8920
C. M. Pancerella, 8920
R. A. Whiteside, 8920
S. C. Gray, 8930
B.A. Maxwell, 8940
J. Meza, 8950
D. B. Hall, 8970
T. O. Hunter, 8000
Attn: J. B. Wright, 2200

M. E. John, 8100
L. A. West, 8200
W. J. McLean, 8300
R. C. Wayne, 8400
P. N. Smith, 8500
P. E. Brewer, 8600
T. M. Dyer, 8700
L. A. Hiles, 8800
K. C. Olsen, 11600

D. Chavez, LDRD Office
Central Technical Files, 8940-2
Technical Library, 4916
Technical Communications Dept. 8815?Technical Library, 4916
Technical Communications Dept. 8815 for DOWOSTI


	Abstract
	Table of Contents
	1 INTRODUCTION
	1.1 Distributed Object Technology
	1.2 Common Object Request Broker Architecture (CORBA)
	1.3 Software Agents
	1.4 Agent Communication Languages
	1.5 Knowledge Representation
	1.6 Agent Architecture and Knowledge Sharing

	2 EXPERIENCES WITH INTEGRATION USING DISTRIBUTED OBJECT TECHNOLOGIES
	2.1 Sandia Agile Manufacturing Testbed
	2.2 Manufacturing Cell Software
	2.3 Manufacturing Devices
	2.4 IDevice Interface
	2.5 Cell Management Software
	2.6 Integrating Enterprise Applications Using CORBA
	2.7 Strengths and Weaknesses of Our CORBA-Based Manufacturing Integration 

	3 EXPERIENCES WITH AGENT-BASED INTEGRATION TECHNIQUES
	3.1 Representation of Process Capability Models
	3.2 Agent Architecture
	3.3 Application of Capability Information During Design
	3.4 Integrating Enterprise Applications in the Agent-Based Architecture
	3.5 Strengths and Weaknesses of Our Agent-Based Integration

	4 SOFTWARE INTEGRATION ISSUES
	4.1 Integration Strategies
	4.2 Problems With Using CORBA to Integrate Enterprises
	4.3 Problems With Using Software Agent Communication Languages to Integrate Enterprises
	4.4 Evaluating Distributed Object Techniques and Software Agent Approaches to Enterprise Integration
	4.5 Using Java To Integrate Manufacturing and Engineering Enterprises
	4.6 Recommendations for Integrating Manufacturing and Engineering Enterprises

	5 CONCLUSIONS AND FUTURE WORK
	6 ACKNOWLEDGMENTS
	7 REFERENCES
	DISTRIBUTION

